β-H abstraction/1,3-CH bond addition as a mechanism for the activation of CH bonds at early transition metal centers

Yimu Hu, Nuria Romero, Chiara Dinoi, Laure Vendier, Sonia Mallet-Ladeira, John E. McGrady, Abel Locati, Feliu Maseras, Michel Etienne

Research output: Contribution to journalArticleResearchpeer-review

14 Citations (Scopus)

Abstract

© 2014 American Chemical Society. This article describes the generalization of an overlooked mechanism for CH bond activation at early transition metal centers, namely 1,3-CH bond addition at an η2-alkene intermediate. The X-ray-characterized [Cp2Zr(c-C3H5)2] eliminates cyclopropane by a β-H abstraction reaction to generate the transient η2-cyclopropene [Cp2Zr(η2-c-C3H4)] intermediate A. A rapidly cleaves the CH bond of furan and thiophene to give the furyl and thienyl complexes [Cp2Zr(c-C3H5)(2-C4H3X)] (X = O, S), respectively. Benzene is less cleanly activated. Mechanistic investigations including kinetic studies, isotope labeling, and DFT computation of the reaction profile all confirm that rapid stereospecific 1,3-CH bond addition across the Zr(η2-alkene) bond of A follows the rate-determining β-H abstraction reaction. DFT computations also suggest that an α-CC agostic rotamer of [Cp2Zr(c-C3H5)2] assists the β-H abstraction of cyclopropane. The nature of the α-CC agostic interaction is discussed in the light of an NBO analysis.
Original languageEnglish
Pages (from-to)7270-7278
JournalOrganometallics
Volume33
Issue number24
DOIs
Publication statusPublished - 22 Dec 2014

Fingerprint

Dive into the research topics of 'β-H abstraction/1,3-CH bond addition as a mechanism for the activation of CH bonds at early transition metal centers'. Together they form a unique fingerprint.

Cite this