Abstract Stroke produces a powerful inflammatory cascade in the brain, but also a suppression of the peripheral immune system, which is also called stroke-induced immunosuppression (SIIS). The main processes that lead to SIIS are a shift from a lymphocyte phenotype T-helper (Th) 1 to a Th2 phenotype, a decrease of the lymphocyte counts and NK cells in the blood and spleen, and an impairment of the defense mechanisms of neutrophils and monocytes. The direct clinical consequence of SIIS in stroke patients is an increased susceptibility to stroke-associated infections, which is enhanced by clinical factors like dysphagia. Among these infections, stroke-associated pneumonia (SAP) is the one that accounts for the highest impact on stroke outcome, so research is focused on its early diagnosis and prevention. Biomarkers indicating modifications in SIIS pathways could have an important role in the early prediction of SAP, but currently, there are no individual biomarkers or panels of biomarkers that are accurate enough to be translated to clinical practice. Similarly, there is still no efficient therapy to prevent the onset of SAP, and clinical trials testing prophylactic antibiotic treatment and β-blockers have failed. However, local immunomodulation could open up a new research opportunity to find a preventive therapy for SAP. Recent studies have focused on the pulmonary immune changes that could be caused by stroke similarly to other acquired brain injuries. Some of the traits observed in animal models of stroke include lung edema and inflammation, as well as inflammation of the bronchoalveolar lavage fluid.
Date made available7 Jun 2021

Cite this