El desenvolupament de nous (bio)sensors és un camp en ple desenvolupament dins de les necessitats de la Química Analítica i, en general, de la societat. L’ús de sensors està altament estès en la vida quotidiana de les persones. En el mercat, es troben disponibles diferents tipus de glucòmetre, que poden informar de la concentració de glucosa en sang en temps real del pacient. També es pot observar la necessitat d’avui dia de desenvolupar nous test de diagnosi per a malalties com la provocada pel virus SARS-COVID-19. El grafè s’ha convertit en un material de gran interès entre la comunitat científica, a causa de les propietats elèctriques, tèrmiques i mecàniques úniques que aquest material posseeix respecte a altres materials carbònics i 2D. A causa dels seus excepcionals característiques i propietats l’ús de grafè com a material conductor alternatiu en el desenvolupament de transductors electroquímics s’ha estès àmpliament i convertit en un dels principals recursos. Els nanocompósitos se situen com una alternativa molt interessant en el desenvolupament de sensors amperométricos. Degut, especialment, a la capacitat d’integrar diversos materials amb diferents característiques amb la finalitat d’obtenir un nou material amb propietats físiques, mecàniques i elèctriques molt diferents als materials originals que el constitueixen. L’ús de nanocompósitos presenta una sèrie d’avantatges respecte als conductors purs. Aquests avantatges són, per exemple, versatilitat, durabilitat, facilitat de regeneració de la superfície i la seva capacitat d’integració d’altres modificadors, qualitats que proporcionen un valor afegit als dispositius desenvolupats. Les propietats electroquímiques dels nanocompósitos estan altament influenciades per la naturalesa de les partícules conductores que ho formen, així com la quantitat i la distribució espacial d’aquestes en la matriu del nanocompósito. Una de les característiques més rellevants que posseeixen aquests materials és la similitud en el seu comportament electroquímic respecte a un feix de microelectrodos. La presència de partícules conductores, separades per àrees no conductores o aïllants en la superfície de l’elèctrode, mimetitza la distribució més o menys ordenada de microelectrodos separats entre si per un aïllant elèctric, configurant així un feix de microelectrodos. La resposta electroanalítica d’un feix de microelectrodos depèn fonamentalment de les dimensions i separació entre les partícules conductores. Per aquest motiu, és necessària una optimització de la quantitat de material conductor i de la seva distribució amb l’objectiu d’obtenir la millor eficàcia analítica. Sota aquest context, la primera etapa d’aquesta Tesi és la síntesi d’òxid de grafè reduït (rGO) mitjançant el mètode de Hummers. Aquest mètode permet obtenir rGO utilitzant grafit comercial com a material de partida per a la fabricació d’elèctrodes nanocompósitos basats en rGO i una resina epoxi (EpoTek H77). Posteriorment, s’ha implementat un conjunt de tècniques instrumentals que, aplicades de manera estratègica i sistemàtica, han permès la caracterització i optimització de la composició del material conductor; així com la millora de les propietats electroquímiques dels elèctrodes nanocompósitos desenvolupats amb els diferents materials conductors sintetitzats. Una vegada optimitzades les propietats dels transductors electroquímics es va procedir a la millora de les propietats analítiques d’aquests sensors electroquímics, mitjançant la incorporació de diferents nanopartícules (NPs) metàl·liques, amb l’objectiu d’introduir un efecte electrocatalítico en el dispositiu analític. D’aquesta manera, es va desenvolupar una metodologia sintètica, la qual permet incorporar ad hoc NPs de diferents metalls (e.g Au, Ag, Pd) en la superfície del rGO, d’una manera senzilla i mitjançant química verda. Finalment, s’ha desenvolupat un (bio)sensor utilitzant l’enzim glucosa oxidasa (GOD), basat en un nanocompósito de 2Au/*3Pd-Np@rgo. Estudiant l’efecte catalític que tenen les NPs bimetàl·liques de Au i Pd enfront del H2O2. Per a finalitzar, es va estudiar l’efecte de la presència de l’àcid ascòrbic en les mesures electroanalíticas (una interferència present en moltes mostres biològiques).
Síntesis y caracterización de óxido de grafeno reducido funcionalizado con nanopartículas metálicas. Aplicación en el desarrollo de sensores amperométricos basados en materiales nanoestructurados
Rodriguez Rodriguez, J. (Autor). 27 de gen. 2021
Tesi d’estudis: Tesi doctoral
Rodriguez Rodriguez, J. (Autor),
Cespedes Mulero, F. (Tutor/a),
27 de gen. 2021Tesi d’estudis: Tesi doctoral
Tesi d’estudis: Tesi doctoral