Modeling Human Behavior for Image Sequence Understanding and Generation

Tesi d’estudis: Tesi doctoral

Resum

La comprensió del comportament dels animals, i en especial dels humans, és un dels problemes més antics i estudiats al llarg de la història, quasi des del inici de la civilització. La quantitat de factors diferents que actuen alhora de determinar les accions d'una persona requereixen la participació de diferents disciplines, com la psicologia, biologia, o sociologia. En els darrers anys l'anàlisi del comportament humà ha esdevingut també un tema molt interessant per a la comunitat científica de visió per computador, gràcies als darrers avenços en l'adquisició de dades sobre el moviment humà a partir de seqüències d'imatges. <br/>Malgrat la creixent disponibilitat d'aquestes dades, existeix encara una barrera per obtenir una representació conceptual de les observacions obtingudes. L'avaluació del comportament humà en seqüències d'imatges està basat en una interpretació qualitativa dels resultats, i per tant l'assignació de conceptes a les dades quantitatives obtingudes està lligada a una certa ambigüitat. <br/>Aquesta Tesi confronta el problema d'obtenir una representació correcta del comportament humà en els contexts de la visió i animació per computador. En primer lloc, un bon model de comportament ha de permetre reconèixer i descriure l'activitat observada en seqüències d'imatges. D'altra banda, el model ha de permetre generar sintèticament noves instàncies, que permetin modelar el comportament d'agents virtuals.<br/>En primer lloc, proposem mètodes per aprendre els models directament de les observacions. A partir de les dades obtingudes mitjançant l'anàlisi de seqüències d'imatges, construïm models de comportament normal dins l'escenari. Això ens proporciona una eina per determinar la normalitat o anormalitat de futures observacions. Tanmateix, els mètodes d'aprenentatge automàtic son incapaços de proveir una descripció semàntica de les observacions. Aquesta problema és tractat mitjançant un nou mètode que incorpora un coneixement a--priori sobre l'escena i els comportaments esperats. Aquesta estructura, formada pel motor de raonament difús FMTL i l'eina de modelatge SGT, permet obtenir descripcions conceptuals del contingut de noves seqüències de vídeo. Finalment, l'estructura FMTL + SGT ens permet simular comportament sintètic i introduir agents virtuals dins d'escenes reals que interactuen amb els agents reals existents, construint d'aquesta manera seqüències de realitat augmentada. <br/>El conjunt de mètodes presentats en aquesta Tesi tenen un conjunt potencial d'aplicacions cada cop més gran. Per un costat, el reconeixement i descripció de comportament en seqüències d'imatges té com a principal aplicació la vídeo--vigilància intel·ligent, permetent detectar comportaments delictius o perillosos. Altres aplicacions inclouen la transcripció d'esdeveniments esportius, monitorització de centres geriàtrics, anàlisi de tràfic en carreteres i la construcció de buscadors de vídeo basats en conceptes semàntics. D'altra banda, l'animació d'agents virtuals amb comportaments complexes permet obtenir simulacions acurades de situacions reals, com per exemple incendis o multituds. A més, la inclusió d'agents virtuals en entorns reals té forta implantació en els mons dels videojocs i el cinema.
Data del Ajut13 de jul. 2009
Idioma originalAnglès
SupervisorFrancesc Xavier Roca Marva (Director/a) & Jordi Gonzalez Sabate (Director/a)

Com citar-ho

'