Zero-Hopf bifurcations in 3-dimensional differential systems with no equilibria

Murilo R. Cândido, Jaume Llibre

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

10 Cites (Scopus)

Resum

© 2018 International Association for Mathematics and Computers in Simulation (IMACS) Recently sixteen 3-dimensional differential systems exhibiting chaotic motion and having no equilibria have been studied, and it has been graphically observed that these systems have a period-doubling cascade of periodic orbits providing a route to chaos. Here using new results on the averaging theory we prove that these systems exhibit, for some values of their parameters different to the ones having chaotic motion, either a zero-Hopf or a Hopf bifurcation, and graphically we observed that the periodic orbit starting in those bifurcations is at the beginning of the mentioned period-doubling cascade.
Idioma originalAnglès
Pàgines (de-a)54-76
RevistaMathematics and Computers in Simulation
Volum151
DOIs
Estat de la publicacióPublicada - 1 de set. 2018

Fingerprint

Navegar pels temes de recerca de 'Zero-Hopf bifurcations in 3-dimensional differential systems with no equilibria'. Junts formen un fingerprint únic.

Com citar-ho