Z2Z4-linear codes: Generator matrices and duality

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

136 Cites (Scopus)

Resum

A code ℤ24-additive if the set of coordinates can be partitioned into two subsets X and Y such that the punctured code of C by deleting the coordinates outside X (respectively, Y) is a binary linear code (respectively, a quaternary linear code). In this paper ℤ24-additive codes are studied. Their corresponding binary images, via the Gray map, are ℤ24-linear codes, which seem to be a very distinguished class of binary group codes. As for binary and quaternary linear codes, for these codes the fundamental parameters are found and standard forms for generator and parity-check matrices are given. In order to do this, the appropriate concept of duality for ℤ24-additive codes is defined and the parameters of their dual codes are computed.

Idioma originalAnglès
Pàgines (de-a)167-179
Nombre de pàgines13
RevistaDesigns, Codes, and Cryptography
Volum54
Número2
DOIs
Estat de la publicacióPublicada - de febr. 2010

Fingerprint

Navegar pels temes de recerca de 'Z2Z4-linear codes: Generator matrices and duality'. Junts formen un fingerprint únic.

Com citar-ho