Whole-grain Petri Nets and Processes

Joachim Kock*

*Autor corresponent d’aquest treball

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

5 Cites (Scopus)

Resum

We present a formalism for Petri nets based on polynomial-style finite-set configurations and etale maps. The formalism supports both a geometric semantics in the style of Goltz and Reisig (processes are etale maps from graphs) and an algebraic semantics in the style of Meseguer and Montanari, in terms of free coloured props, and allows the following unification: for P a Petri net, the Segal space of P-processes is shown to be the free coloured prop-in-groupoids on P. There is also an unfolding semantics à la Winskel, which bypasses the classical symmetry problems: with the new formalism, every Petri net admits a universal unfolding, which in turn has associated an event structure and a Scott domain. Since everything is encoded with explicit sets, Petri nets and their processes have elements. In particular, individual-token semantics is native. (Collective-token semantics emerges from rather drastic quotient constructions à la Best-Devillers, involving taking π0 of the groupoids of states.)

Idioma originalAnglès
Número d’article3559103
Pàgines (de-a)1-58
Nombre de pàgines58
RevistaJournal of the ACM
Volum70
Número1
DOIs
Estat de la publicacióPublicada - 20 de des. 2022

Fingerprint

Navegar pels temes de recerca de 'Whole-grain Petri Nets and Processes'. Junts formen un fingerprint únic.

Com citar-ho