Weather Classification by Utilizing Synthetic Data

Saad Minhas*, Zeba Khanam, Shoaib Ehsan, Klaus McDonald-Maier, Aura Hernández-Sabaté

*Autor corresponent d’aquest treball

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

7 Cites (Scopus)
1 Descàrregues (Pure)

Resum

Weather prediction from real-world images can be termed a complex task when targeting classification using neural networks. Moreover, the number of images throughout the available datasets can contain a huge amount of variance when comparing locations with the weather those images are representing. In this article, the capabilities of a custom built driver simulator are explored specifically to simulate a wide range of weather conditions. Moreover, the performance of a new synthetic dataset generated by the above simulator is also assessed. The results indicate that the use of synthetic datasets in conjunction with real-world datasets can increase the training efficiency of the CNNs by as much as 74%. The article paves a way forward to tackle the persistent problem of bias in vision-based datasets.

Idioma originalAnglès
Número d’article3193
Nombre de pàgines12
RevistaSensors
Volum22
Número9
DOIs
Estat de la publicacióPublicada - 1 de maig 2022

Fingerprint

Navegar pels temes de recerca de 'Weather Classification by Utilizing Synthetic Data'. Junts formen un fingerprint únic.

Com citar-ho