Volumes of SL_n(C)–representations of hyperbolic 3–manifolds

Producció científica: Contribució a revistaArticleRecerca

2 Descàrregues (Pure)

Resum

© 2018, Mathematical Sciences Publishers. All rights reserved. Let M be a compact oriented three-manifold whose interior is hyperbolic of finite volume. We prove a variation formula for the volume on the variety of representations of1 (M) in SLn (C). Our proof follows the strategy of Reznikov’s rigidity when M is closed; in particular, we use Fuks’s approach to variations by means of Lie algebra cohomology. When n = 2, we get Hodgson’s formula for variation of volume on the space of hyperbolic Dehn fillings. Our formula also recovers the variation of volume on the space of decorated triangulations obtained by Bergeron, Falbel and Guilloux and Dimofte, Gabella and Goncharov.
Idioma originalAnglès
Pàgines (de-a)4067-4112
RevistaGeometry and Topology
Volum22
DOIs
Estat de la publicacióPublicada - 6 de des. 2018

Fingerprint

Navegar pels temes de recerca de 'Volumes of SL_n(C)–representations of hyperbolic 3–manifolds'. Junts formen un fingerprint únic.

Com citar-ho