VLCDoC: Vision-Language contrastive pre-training model for cross-Modal document classification

Souhail Bakkali*, Zuheng Ming, Mickael Coustaty, Marçal Rusiñol, Oriol Ramos Terrades

*Autor corresponent d’aquest treball

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

18 Cites (Scopus)

Resum

Multimodal learning from document data has achieved great success lately as it allows to pre-train semantically meaningful features as a prior into a learnable downstream task. In this paper, we approach the document classification problem by learning cross-modal representations through language and vision cues, considering intra- and inter-modality relationships. Instead of merging features from different modalities into a joint representation space, the proposed method exploits high-level interactions and learns relevant semantic information from effective attention flows within and across modalities. The proposed learning objective is devised between intra- and inter-modality alignment tasks, where the similarity distribution per task is computed by contracting positive sample pairs while simultaneously contrasting negative ones in the joint representation space. Extensive experiments on public benchmark datasets demonstrate the effectiveness and the generality of our model both on low-scale and large-scale datasets.

Idioma originalAnglès
Número d’article109419
Nombre de pàgines11
RevistaPattern Recognition
Volum139
DOIs
Estat de la publicacióPublicada - de jul. 2023

Fingerprint

Navegar pels temes de recerca de 'VLCDoC: Vision-Language contrastive pre-training model for cross-Modal document classification'. Junts formen un fingerprint únic.

Com citar-ho