Variable selection in Data Envelopment Analysis

Antonio Peyrache*, Christiern Rose, Gabriela Sicilia

*Autor corresponent d’aquest treball

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

38 Cites (Scopus)

Resum

The selection of inputs and outputs in Data Envelopment Analysis (DEA) is regarded as an important step that is normally conducted before the DEA model is implemented. In this paper, we introduce cardinality constraints directly into the DEA program in order to select the relevant inputs and outputs automatically, without any previous statistical analysis, heuristic decision making or expert judgement (though our method is not incompatible with these other approaches and indeed may help to choose among them). The selection of variables is obtained solving a mixed integer linear program (MILP) which specifies the maximal number of variables to be used. The computational time of the program is fast in all practical situations. We explore the performance of the method via Monte Carlo simulations. Some empirical applications are considered in order to illustrate the usefulness of the method.
Idioma originalAnglès
Pàgines (de-a)644-659
Nombre de pàgines16
RevistaEuropean journal of operational research
Volum282
Número2
DOIs
Estat de la publicacióPublicada - 16 d’abr. 2020

Fingerprint

Navegar pels temes de recerca de 'Variable selection in Data Envelopment Analysis'. Junts formen un fingerprint únic.

Com citar-ho