TY - JOUR
T1 - Validation of an Optical Technology for the Determination of pH in Milk during Yogurt Manufacture
AU - Liu, Siqi
AU - Contreras, Fanny
AU - Alemán, Ricardo S.
AU - Fuentes, Jhunior Marcía
AU - Arango, Oscar
AU - Castillo Zambudio, Manuel
PY - 2024
Y1 - 2024
N2 - Current systems that allow inline pH control in the fermented dairy industry have drawbacks, such as protein adhesion on the non-glass pH probes, measurement distortion, frequent recalibration needs, and sensitivity to extreme pH conditions encountered during clean-in-place operations. Therefore, the objective of this study was to validate the feasibility of estimating the pH of milk during the yogurt making process by using a NIR light backscatter sensor measuring under different fermentation temperatures and milk protein concentrations using a mathematical model that correlates the light scatter signal with pH. Three replications of the experiment with two protein concentrations (3.5 and 4.0%) and two fermentation temperatures (43 and 46 °C) were used to validate this inline pH prediction model. Continuous and discontinuous measurements of pH were collected as a reference during fermentation, simultaneously with the light backscatter data acquisition. Also, the effect of adjusting the initial voltage gain of the light scatter device on the accuracy of the pH prediction model was evaluated. Temperature and initial voltage were the main factors affecting the fitting accuracy of the model. The adjustment of the initial voltage gain improved the pH prediction model fit. The model has been successfully validated for both continuous and discontinuous measurements of pH, with SEP values < 0.09 pH units and CV < 1.78%. The proposed optical inline and non-destructive method was feasible for inline pH monitoring of milk fermentation, avoiding traditional manual pH measurement.
AB - Current systems that allow inline pH control in the fermented dairy industry have drawbacks, such as protein adhesion on the non-glass pH probes, measurement distortion, frequent recalibration needs, and sensitivity to extreme pH conditions encountered during clean-in-place operations. Therefore, the objective of this study was to validate the feasibility of estimating the pH of milk during the yogurt making process by using a NIR light backscatter sensor measuring under different fermentation temperatures and milk protein concentrations using a mathematical model that correlates the light scatter signal with pH. Three replications of the experiment with two protein concentrations (3.5 and 4.0%) and two fermentation temperatures (43 and 46 °C) were used to validate this inline pH prediction model. Continuous and discontinuous measurements of pH were collected as a reference during fermentation, simultaneously with the light backscatter data acquisition. Also, the effect of adjusting the initial voltage gain of the light scatter device on the accuracy of the pH prediction model was evaluated. Temperature and initial voltage were the main factors affecting the fitting accuracy of the model. The adjustment of the initial voltage gain improved the pH prediction model fit. The model has been successfully validated for both continuous and discontinuous measurements of pH, with SEP values < 0.09 pH units and CV < 1.78%. The proposed optical inline and non-destructive method was feasible for inline pH monitoring of milk fermentation, avoiding traditional manual pH measurement.
KW - Yogurt fermentation
KW - NIR light backscatter
KW - Optic sensor
KW - Inline
KW - pH monitoring
KW - Temperature
KW - Protein concentration
U2 - 10.3390/foods13172766
DO - 10.3390/foods13172766
M3 - Article
C2 - 39272531
SN - 2304-8158
VL - 13
JO - Foods
JF - Foods
ER -