Resum
We prove that any classical Liénard differential equation of degree four has at most one limit cycle, and the limit cycle is hyperbolic if it exists. This result gives a positive answer to the conjecture by A. Lins, W. de Melo and C.C. Pugh (1977) [4] about the number of limit cycles for polynomial Liénard differential equations for n = 4. © 2011 Elsevier Inc.
| Idioma original | Anglès |
|---|---|
| Pàgines (de-a) | 3142-3162 |
| Revista | Journal of Differential Equations |
| Volum | 252 |
| Número | 4 |
| DOIs | |
| Estat de la publicació | Publicada - 15 de febr. 2012 |