TY - JOUR
T1 - Understanding the interaction of an antitumoral platinum(II) 7-azaindolate complex with proteins and DNA
AU - Samper, Katia G.
AU - Rodríguez, Venancio
AU - Ortega-Carrasco, Elisabeth
AU - Atrian, Sílvia
AU - Maréchal, Jean Didier
AU - Cutillas, Natalia
AU - Zamora, Ana
AU - De Haro, Concepción
AU - Capdevila, Mercè
AU - Ruiz, José
AU - Palacios, Òscar
PY - 2014/1/1
Y1 - 2014/1/1
N2 - © Springer Science+Business Media New York 2014. The reactivity of the [Pt(dmba)(aza-N1)(dmso)] complex 1, (a potential antitumoral drug with lower IC50 than cisplatin in several tumoral cell lines) with different proteins and oligonucleotides is investigated by means of mass spectrometry (ESI-TOF MS). The results obtained show a particular binding behaviour of this platinum(II) complex. The interaction of 1 with the assayed proteins apparently takes place by Pt-binding to the most accessible coordinating amino acids, presumably at the surface of the protein -this avoiding protein denaturation or degradation- with the subsequent release of one or two ligands of 1. The specific reactivity of 1 with distinct proteins allows to conclude that the substituted initial ligand (dmso or azaindolate) is indicative of the nature of the protein donor atom finally bound to the platinum(II) centre, i.e. N- or S-donor amino acid. Molecular modeling calculations suggest that the release of the azaindolate ligand is promoted by a proton transfer to the non-coordinating N present in the azaindolate ring, while the release of the dmso ligand is mainly favoured by the binding of a deprotonated Cys. The interaction of complex 1 with DNA takes always place through the release of the azaindolate ligand. Interestingly, the interaction of 1 with DNA only proceeds when the oligonucleotides are annealed forming a double strand. Complex 1 is also capable to displace ethidium bromide from DNA and it also weakly binds to DNA at the minor groove, as shown by Hoechst 33258 displacement experiments. Furthermore, complex 1 is also a good inhibitor of cathepsin B (an enzyme implicated in a number of cancer related events). Therefore, although compound 1 is definitely able to bind proteins that can hamper its arrival to the nuclear target, it should be taken into consideration as a putative anticancer drug due to its strong interaction with oligonucleotides and its effective inhibition of cat B.
AB - © Springer Science+Business Media New York 2014. The reactivity of the [Pt(dmba)(aza-N1)(dmso)] complex 1, (a potential antitumoral drug with lower IC50 than cisplatin in several tumoral cell lines) with different proteins and oligonucleotides is investigated by means of mass spectrometry (ESI-TOF MS). The results obtained show a particular binding behaviour of this platinum(II) complex. The interaction of 1 with the assayed proteins apparently takes place by Pt-binding to the most accessible coordinating amino acids, presumably at the surface of the protein -this avoiding protein denaturation or degradation- with the subsequent release of one or two ligands of 1. The specific reactivity of 1 with distinct proteins allows to conclude that the substituted initial ligand (dmso or azaindolate) is indicative of the nature of the protein donor atom finally bound to the platinum(II) centre, i.e. N- or S-donor amino acid. Molecular modeling calculations suggest that the release of the azaindolate ligand is promoted by a proton transfer to the non-coordinating N present in the azaindolate ring, while the release of the dmso ligand is mainly favoured by the binding of a deprotonated Cys. The interaction of complex 1 with DNA takes always place through the release of the azaindolate ligand. Interestingly, the interaction of 1 with DNA only proceeds when the oligonucleotides are annealed forming a double strand. Complex 1 is also capable to displace ethidium bromide from DNA and it also weakly binds to DNA at the minor groove, as shown by Hoechst 33258 displacement experiments. Furthermore, complex 1 is also a good inhibitor of cathepsin B (an enzyme implicated in a number of cancer related events). Therefore, although compound 1 is definitely able to bind proteins that can hamper its arrival to the nuclear target, it should be taken into consideration as a putative anticancer drug due to its strong interaction with oligonucleotides and its effective inhibition of cat B.
KW - Antitumoral compound
KW - DNA interaction
KW - Mass spectrometry
KW - Platinum
KW - Protein interaction
U2 - 10.1007/s10534-014-9780-1
DO - 10.1007/s10534-014-9780-1
M3 - Article
SN - 0966-0844
VL - 27
SP - 1159
EP - 1177
JO - BioMetals
JF - BioMetals
IS - 6
ER -