Two-dimensional graphene with structural defects: Elastic mean free path, minimum conductivity, and anderson transition

Aurélien Lherbier, Simon M.M. Dubois, Xavier Declerck, Stephan Roche, Yann Michel Niquet, Jean Christophe Charlier

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

84 Cites (Scopus)

Resum

Quantum transport properties of disordered graphene with structural defects (Stone-Wales and divacancies) are investigated using a realistic π-π* tight-binding model elaborated from ab initio calculations. Mean free paths and semiclassical conductivities are then computed as a function of the nature and density of defects (using an order-N real-space Kubo-Greenwood method). By increasing the defect density, the decay of the semiclassical conductivities is predicted to saturate to a minimum value of 4e2/πh over a large range (plateau) of carrier density (>0. 5×1014cm-2). Additionally, strong contributions of quantum interferences suggest that the Anderson localization regime could be experimentally measurable for a defect density as low as 1%. © 2011 American Physical Society.
Idioma originalAnglès
Número d’article046803
RevistaPhysical Review Letters
Volum106
Número4
DOIs
Estat de la publicacióPublicada - 25 de gen. 2011

Fingerprint

Navegar pels temes de recerca de 'Two-dimensional graphene with structural defects: Elastic mean free path, minimum conductivity, and anderson transition'. Junts formen un fingerprint únic.

Com citar-ho