Twin Polynomial Vector Fields of Arbitrary Degree

Jaume Llibre, Claudia Valls*

*Autor corresponent d’aquest treball

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

1 Citació (Scopus)

Resum

In this paper we study polynomial vector fields on C2 of degree larger than 2 with n2 isolated singularities. More precisely, we show that if two polynomial vector fields share n2- 1 singularities with the same spectra (trace and determinant) and from these singularities n2- 2 have the same positions, then both vector fields have identical position and spectra at all the singularities. Moreover we also show that if two polynomial vector fields share n2- 1 singularities with the same positions and from these singularities n2- 2 have the same spectra, then both vector fields have identical position and spectra at all the singularities. Moreover we also prove that generic vector fields of degree n> 2 have no twins and that for any n> 2 there exist two uniparametric families of twin vector fields, i.e. two different families of vector fields having exactly the same singular points and for each singular point both vector fields have the same spectrum.

Idioma originalEnglish
Pàgines (de-a)295-306
Nombre de pàgines12
RevistaBoletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society
Volum53
Número1
DOIs
Estat de la publicacióPublicada - de març 2022

Fingerprint

Navegar pels temes de recerca de 'Twin Polynomial Vector Fields of Arbitrary Degree'. Junts formen un fingerprint únic.

Com citar-ho