Transport properties and first-arrival statistics of random motion with stochastic reset times

Axel Masó-Puigdellosas, Daniel Campos, Vicenç Méndez

Producció científica: Contribució a revistaArticleRecerca

60 Cites (Scopus)

Resum

© 2019 American Physical Society. Stochastic resets have lately emerged as a mechanism able to generate finite equilibrium mean-square displacement (MSD) when they are applied to diffusive motion. Furthermore, walkers with an infinite mean first-arrival time (MFAT) to a given position x may reach it in a finite time when they reset their position. In this work we study these emerging phenomena from a unified perspective. On one hand, we study the existence of a finite equilibrium MSD when resets are applied to random motion with (x2(t))m∼tp for 0<p≤2. For exponentially distributed reset times, a compact formula is derived for the equilibrium MSD of the overall process in terms of the mean reset time and the motion MSD. On the other hand, we also test the robustness of the finiteness of the MFAT for different motion dynamics which are subject to stochastic resets. Finally, we study a biased Brownian oscillator with resets with the general formulas derived in this work, finding its equilibrium first moment and MSD and its MFAT to the minimum of the harmonic potential.
Idioma originalAnglès
Número d’article012141
Pàgines (de-a)012141
Nombre de pàgines9
RevistaPhysical Review E
Volum99
Número1-1
DOIs
Estat de la publicacióPublicada - 28 de gen. 2019

Fingerprint

Navegar pels temes de recerca de 'Transport properties and first-arrival statistics of random motion with stochastic reset times'. Junts formen un fingerprint únic.

Com citar-ho