Topology and the Kardar-Parisi-Zhang universality class

Silvia N. Santalla, Javier Rodríguez-Laguna, Alessio Celi, Rodolfo Cuerno

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

18 Cites (Scopus)

Resum

We study the role of the topology of the background space on the one-dimensional Kardar-Parisi-Zhang (KPZ) universality class. To do so, we study the growth of balls on disordered 2D manifolds with random Riemannian metrics, generated by introducing random perturbations to a base manifold. As base manifolds we consider cones of different aperture angles θ, including the limiting cases of a cylinder (, which corresponds to an interface with periodic boundary conditions) and a plane (, which corresponds to an interface with circular geometry). We obtain that in the former case the radial fluctuations of the ball boundaries approach the Tracy-Widom (TW) distribution of the largest eigenvalue of random matrices in the Gaussian orthogonal ensemble (TW-GOE), while on cones with any aperture angle fluctuations correspond to the TW-GUE distribution related with the Gaussian unitary ensemble. We provide a topological argument to justify the relevance of TW-GUE statistics for cones, and state a conjecture which relates the KPZ universality subclass with the background topology.

Idioma originalEnglish
Número d’article023201
RevistaJournal of Statistical Mechanics: Theory and Experiment
Volum2017
Número2
DOIs
Estat de la publicacióPublicada - 3 de febr. 2017

Fingerprint

Navegar pels temes de recerca de 'Topology and the Kardar-Parisi-Zhang universality class'. Junts formen un fingerprint únic.

Com citar-ho