Topological edge states and Aharanov-Bohm caging with ultracold atoms carrying orbital angular momentum

G. Pelegrí, A. M. Marques, R. G. Dias, A. J. Daley, J. Mompart, V. Ahufinger

Producció científica: Contribució a una revistaArticleRecerca

28 Cites (Scopus)

Resum

© 2019 American Physical Society. We show that bosonic atoms loaded into orbital angular momentum l=1 states of a lattice in a diamond-chain geometry provide a flexible and simple platform for exploring a range of topological effects. This system exhibits robust edge states that persist across the gap-closing points, indicating the absence of a topological transition. We discuss how to perform the topological characterization of the model with a generalization of the Zak's phase and we show that this system constitutes a realization of a square-root topological insulator. Furthermore, the relative phases arising naturally in the tunneling amplitudes lead to the appearance of Aharanov-Bohm caging in the lattice. We discuss how these properties can be realized and observed in ongoing experiments.
Idioma originalEnglish
Número d’article023613
RevistaPhysical Review A
Volum99
DOIs
Estat de la publicacióPublicada - 11 de febr. 2019

Fingerprint

Navegar pels temes de recerca de 'Topological edge states and Aharanov-Bohm caging with ultracold atoms carrying orbital angular momentum'. Junts formen un fingerprint únic.

Com citar-ho