TY - JOUR
T1 - The structure of Rényi entropic inequalities
AU - Linden, Noah
AU - Mosonyi, Milán
AU - Winter, Andreas
PY - 2013/10/8
Y1 - 2013/10/8
N2 - We investigate the universal inequalities relating the α-Rényi entropies of the marginals of a multipartite quantum state. This is in analogy to the same question for the Shannon and von Neumann entropies (α =1), which are known to satisfy several non-trivial inequalities such as strong subadditivity. Somewhat surprisingly, we find for 0 < α < 1 that the only inequality is non-negativity: in other words, any collection of non-negative numbers assigned to the non-empty subsets of n parties can be arbitrarily well approximated by the α-entropies of the 2n α 1 marginals of a quantum state. For α >1, we show analogously that there are no non-trivial homogeneous (in particular, no linear) inequalities. On the other hand, it is known that there are further, nonlinear and indeed non-homogeneous, inequalities delimiting the α-entropies of a general quantum state. Finally, we also treat the case of Rényi entropies restricted to classical states (i.e. probability distributions), which, in addition to non-negativity, are also subject to monotonicity. For α ≠ 0, 1, we show that this is the only other homogeneous relation. © 2013 The Author(s).
AB - We investigate the universal inequalities relating the α-Rényi entropies of the marginals of a multipartite quantum state. This is in analogy to the same question for the Shannon and von Neumann entropies (α =1), which are known to satisfy several non-trivial inequalities such as strong subadditivity. Somewhat surprisingly, we find for 0 < α < 1 that the only inequality is non-negativity: in other words, any collection of non-negative numbers assigned to the non-empty subsets of n parties can be arbitrarily well approximated by the α-entropies of the 2n α 1 marginals of a quantum state. For α >1, we show analogously that there are no non-trivial homogeneous (in particular, no linear) inequalities. On the other hand, it is known that there are further, nonlinear and indeed non-homogeneous, inequalities delimiting the α-entropies of a general quantum state. Finally, we also treat the case of Rényi entropies restricted to classical states (i.e. probability distributions), which, in addition to non-negativity, are also subject to monotonicity. For α ≠ 0, 1, we show that this is the only other homogeneous relation. © 2013 The Author(s).
KW - Entropy inequalities
KW - Homogeneous inequalities
KW - Multi-partite quantum states
KW - Rényi entropies
KW - Subadditivity
U2 - 10.1098/rspa.2012.0737
DO - 10.1098/rspa.2012.0737
M3 - Article
SN - 1364-5021
VL - 469
JO - Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
JF - Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
M1 - 20120737
ER -