TY - JOUR
T1 - The spatiotemporal distribution of pollen traits related to dispersal and desiccation tolerance in Canarian laurel forest
AU - Nogué, Sandra
AU - Nascimento, Lea de
AU - Graham, Laura
AU - Brown, Luke
AU - Gonzalez, Luis Antonio Gomez
AU - Castilla-Beltrán, Alvaro
AU - Penuelas, Josep
AU - Fernández-Palacios, José María
AU - Willis, Katherine
N1 - Funding Information:
We would like to thank Robert Whittaker for valuable discussions on the topic. We would also like to thank Genaro Barrera and Israel Rodríguez Reverón for their help during the fieldwork in Garajonay National Park. We are grateful to Ángel B Fernández the director of the Garajonay National Park and the administrative team for their support.
Funding Information:
British Ecological Society research grant (4365/5337), S.N. Spanish Ministry of Science (grant PID2019‐110521GB‐I00), J.P. Catalan government grant (SGR2017‐1005), J.P. Fundación Ramón Areces grant ELEMENTAL‐CLIMATE, J.P. Natural Environment Research Council (NERC) (NE/T009373/1), LG.
Publisher Copyright:
© 2022 The Authors. Journal of Vegetation Science published by John Wiley & Sons Ltd on behalf of International Association for Vegetation Science.
PY - 2022/9/1
Y1 - 2022/9/1
N2 - Questions: Pollen traits (e.g., size, wall thickness, number of apertures) have been suggested to be relevant in terms of pollination mechanisms and the ability of the male gametophyte to withstand desiccation. We examined the spatiotemporal distribution of pollen traits related to dispersal (ornamentation and dispersal unit) and desiccation tolerance (wall thickness, presence of furrows and pores and pollen size). Specifically, we address two questions: how are the pollen traits distributed in relation to different levels of aridity? And, how did the pollen trait composition change with changing past environmental conditions?. Location: Laurel forests of La Gomera and Tenerife (Canary Islands). Methods: We used pollen rain from 19 forest plots on an elevational gradient of 1050 m and all laurel forest types (cold, dry, humid and ridge crest) to quantify pollen trait composition using community-weighted means. In addition, we used fossil pollen to examine the composition of pollen traits over 9600 years in response to known intervals of regional past climate change. Results: Our results demonstrated increased prevalence of desiccation tolerance-related pollen traits over drier areas of the laurel forest distribution. We also found increased prevalence of rich pollen grain ornamentation in the core of the laurel forest distribution. Holocene pollen functional diversity increased during a trend towards drier conditions as did the proportion of pollen grains with apertures and thicker walls to indicate desiccation tolerance. Conclusions: Our study provides the first step towards understanding the role of pollen traits when quantifying the dynamics of different plant communities.
AB - Questions: Pollen traits (e.g., size, wall thickness, number of apertures) have been suggested to be relevant in terms of pollination mechanisms and the ability of the male gametophyte to withstand desiccation. We examined the spatiotemporal distribution of pollen traits related to dispersal (ornamentation and dispersal unit) and desiccation tolerance (wall thickness, presence of furrows and pores and pollen size). Specifically, we address two questions: how are the pollen traits distributed in relation to different levels of aridity? And, how did the pollen trait composition change with changing past environmental conditions?. Location: Laurel forests of La Gomera and Tenerife (Canary Islands). Methods: We used pollen rain from 19 forest plots on an elevational gradient of 1050 m and all laurel forest types (cold, dry, humid and ridge crest) to quantify pollen trait composition using community-weighted means. In addition, we used fossil pollen to examine the composition of pollen traits over 9600 years in response to known intervals of regional past climate change. Results: Our results demonstrated increased prevalence of desiccation tolerance-related pollen traits over drier areas of the laurel forest distribution. We also found increased prevalence of rich pollen grain ornamentation in the core of the laurel forest distribution. Holocene pollen functional diversity increased during a trend towards drier conditions as did the proportion of pollen grains with apertures and thicker walls to indicate desiccation tolerance. Conclusions: Our study provides the first step towards understanding the role of pollen traits when quantifying the dynamics of different plant communities.
KW - Canary Islands
KW - Holocene
KW - laurel forest
KW - palaeoecology
KW - pollen traits
UR - http://www.scopus.com/inward/record.url?scp=85141200497&partnerID=8YFLogxK
U2 - 10.1111/jvs.13147
DO - 10.1111/jvs.13147
M3 - Article
AN - SCOPUS:85141200497
SN - 1100-9233
VL - 33
JO - Journal of Vegetation Science
JF - Journal of Vegetation Science
IS - 5
M1 - e13147
ER -