The rank three case of the Hanna Neumann Conjecture

Warren Dicks, Edward Formanek

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

11 Cites (Scopus)

Resum

For a free group G, rk(G) denotes the rank of G, and, for each positive integer n, rk-n(G) denotes max{rk(G) - n, 0}. Let H and K be finitely generated subgroups of a free group. Hanna Neumann conjectured that rk-1(H ∩ K) ≤ rk-1(H) rk-1(K). We prove that rk-1(H ∩ K) ≤ rk-1(H) rk-1(K) + rk-3(H) rk-3(K). This extends results of Hanna Neumann, R. G. Burns and G. Tardos, and shows that, if H has rank three or less, then the conjectured inequality holds. Our argument consists of proving the corresponding case of the Amalgamated Graph Conjecture, and therefore applies to Walter Neumann's strengthened version of the Hanna Neumann Conjecture.
Idioma originalAnglès
Pàgines (de-a)113-151
RevistaJournal of Group Theory
Volum4
DOIs
Estat de la publicacióPublicada - 1 de gen. 2001

Fingerprint

Navegar pels temes de recerca de 'The rank three case of the Hanna Neumann Conjecture'. Junts formen un fingerprint únic.

Com citar-ho