The precise representative for the gradient of the Riesz potential of a finite measure

Julià Cufí, Augusto C. Ponce*, Joan Verdera

*Autor corresponent d’aquest treball

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

3 Cites (Scopus)

Resum

Given a finite nonnegative Borel measure (Formula presented.) in (Formula presented.), we identify the Lebesgue set (Formula presented.) of the vector-valued function (Formula presented.) for any order (Formula presented.). We prove that (Formula presented.) if and only if the integral above has a principal value at (Formula presented.) and (Formula presented.) In that case, the precise representative of (Formula presented.) at (Formula presented.) coincides with the principal value of the integral. We also study the existence of Lebesgue points for the Cauchy integral of the intrinsic probability measure associated with planar Cantor sets, which leads to challenging new questions.

Idioma originalAnglès
Pàgines (de-a)1603-1627
Nombre de pàgines25
RevistaJournal of the London Mathematical Society
Volum106
Número2
DOIs
Estat de la publicacióPublicada - de set. 2022

Fingerprint

Navegar pels temes de recerca de 'The precise representative for the gradient of the Riesz potential of a finite measure'. Junts formen un fingerprint únic.

Com citar-ho