Resum
Interventions to counter misinformation are often less effective for polarizing content on social media platforms. We sought to overcome this limitation by testing an identity-based intervention, which aims to promote accuracy by incorporating normative cues directly into the social media user interface. Across three pre-registered experiments in the US (N = 1709) and UK (N = 804), we found that crowdsourcing accuracy judgements by adding a Misleading count (next to the Like count) reduced participants' reported likelihood to share inaccurate information about partisan issues by 25% (compared with a control condition). The Misleading count was also more effective when it reflected in-group norms (from fellow Democrats/Republicans) compared with the norms of general users, though this effect was absent in a less politically polarized context (UK). Moreover, the normative intervention was roughly five times as effective as another popular misinformation intervention (i.e. the accuracy nudge reduced sharing misinformation by 5%). Extreme partisanship did not undermine the effectiveness of the intervention. Our results suggest that identity-based interventions based on the science of social norms can be more effective than identity-neutral alternatives to counter partisan misinformation in politically polarized contexts (e.g. the US). This article is part of the theme issue 'Social norm change: drivers and consequences'.
Idioma original | Anglès |
---|---|
Número d’article | 20230040 |
Nombre de pàgines | 9 |
Revista | Philosophical Transactions of the Royal Society B: Biological Sciences |
Volum | 379 |
Número | 1897 |
DOIs | |
Estat de la publicació | Publicada - 22 de gen. 2024 |