The equilibrium-value convergence for the multiple-partners game

David Pérez-Castrillo, Chaoran Sun , Luo Chenghong

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

Resum

We study the assignment game (Shapley and Shubik, 1972) and its generalization of the multiple-partners game (Sotomayor, 1992), the simplest many-to-many extension. Our main result is that the Shapley value of a replicated multiple-partners game converges to a competitive equilibrium payoff when the number of replicas tends to infinity. The result also holds for a large subclass of semivalues since we prove that they converge to the same value as the replica becomes large. Furthermore, in supermodular and monotonic assignment games, the asymptotic Shapley value coincides with the mean stable imputation. The proof of our theorem relies on Hall’s theorem.
Idioma originalAnglès
Número d’article105870
Pàgines (de-a)105870
Nombre de pàgines22
RevistaJournal of Economic Theory
Volum220
DOIs
Estat de la publicacióPublicada - de set. 2024

Fingerprint

Navegar pels temes de recerca de 'The equilibrium-value convergence for the multiple-partners game'. Junts formen un fingerprint únic.

Com citar-ho