The centers and their cyclicity for a class of polynomial differential systems of degree 7

Jaume Llibre*, Rebiha Benterki

*Autor corresponent d’aquest treball

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

5 Cites (Scopus)

Resum

We classify the global phase portraits in the Poincaré disc of the generalized Kukles systems ẋ=−y,ẏ=x+axy6+bx3y4+cx5y2+dx7,which are symmetric with respect to both axes of coordinates. Moreover using the averaging theory up to sixth order, we study the cyclicity of the center located at the origin of coordinates, i.e. how many limit cycles can bifurcate from the origin of coordinates of the previous differential system when we perturb it inside the class of all polynomial differential systems of degree 7.

Idioma originalAnglès
Número d’article112456
Pàgines (de-a)112456
Nombre de pàgines16
RevistaJournal of Computational and Applied Mathematics
Volum368
DOIs
Estat de la publicacióPublicada - 1 d’abr. 2020

Fingerprint

Navegar pels temes de recerca de 'The centers and their cyclicity for a class of polynomial differential systems of degree 7'. Junts formen un fingerprint únic.

Com citar-ho