The center problem for Z2-symmetric nilpotent vector fields

Antonio Algaba, Cristóbal García, Jaume Giné*, Jaume Llibre

*Autor corresponent d’aquest treball

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

18 Cites (Scopus)

Resum

We say that a polynomial differential system x˙=P(x,y), y˙=Q(x,y) having the origin as a singular point is Z2-symmetric if P(−x,−y)=−P(x,y) and Q(−x,−y)=−Q(x,y). It is known that there are nilpotent centers having a local analytic first integral, and others which only have a C first integral. However these two kinds of nilpotent centers are not characterized for different families of differential systems. Here we prove that the origin of any Z2-symmetric system is a nilpotent center if, and only if, there is a local analytic first integral of the form H(x,y)=y2+⋯, where the dots denote terms of degree higher than two.

Idioma originalAnglès
Pàgines (de-a)183-198
Nombre de pàgines16
RevistaJournal of Mathematical Analysis and Applications
Volum466
Número1
DOIs
Estat de la publicacióPublicada - 1 d’oct. 2018

Fingerprint

Navegar pels temes de recerca de 'The center problem for Z2-symmetric nilpotent vector fields'. Junts formen un fingerprint únic.

Com citar-ho