The bifurcation set of the period function of the dehomogenized loud's centers is bounded

F. Manosas, J. Villadelprat

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

18 Cites (Scopus)

Resum

This paper is concerned with the behaviour of the period function of the quadratic reversible centers. In this context the interesting stratum is the family of the so-called Loud's dehomogenized systems, namely { x = -y + xyy = x + Dx2 + Fy2.In this paper we show that the bifurcation set of the period function of these centers is contained in the rectangle K = (-7, 2) X (0, 4). More concretely, we prove that if (D, F) ∉ K, then the period function of the center is monotoni- cally increasing. © 2008 American Mathematical Society.
Idioma originalAnglès
Pàgines (de-a)1631-1642
RevistaProceedings of the American Mathematical Society
Volum136
DOIs
Estat de la publicacióPublicada - 1 de maig 2008

Fingerprint

Navegar pels temes de recerca de 'The bifurcation set of the period function of the dehomogenized loud's centers is bounded'. Junts formen un fingerprint únic.

Com citar-ho