Tensor networks for lattice gauge theories with continuous groups

L. Tagliacozzo, A. Celi, M. Lewenstein

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

113 Cites (Scopus)

Resum

We discuss how to formulate lattice gauge theories in the tensor-network language. In this way, we obtain both a consistent-truncation scheme of the Kogut-Susskind lattice gauge theories and a tensornetwork variational ansatz for gauge-invariant states that can be used in actual numerical computations. Our construction is also applied to the simplest realization of the quantum link models or gauge magnets and provides a clear way to understand their microscopic relation with the Kogut-Susskind lattice gauge theories. We also introduce a new set of gauge-invariant operators that modify continuously Rokhsar- Kivelson wave functions and can be used to extend the phase diagrams of known models. As an example, we characterize the transition between the deconfined phase of the Z2 lattice gauge theory and the Rokhsar-Kivelson point of the U(1)gauge magnet in 2D in terms of entanglement entropy. The topological entropy serves as an order parameter for the transition but not the Schmidt gap.

Idioma originalEnglish
Número d’article041024
Nombre de pàgines29
RevistaPhysical Review X
Volum4
Número4
DOIs
Estat de la publicacióPublicada - 2014

Fingerprint

Navegar pels temes de recerca de 'Tensor networks for lattice gauge theories with continuous groups'. Junts formen un fingerprint únic.

Com citar-ho