Resum
We show that every (discrete) group ring D[G] of a free-by-amenable group G over a division ring D of arbitrary characteristic is stably finite, in the sense that one-sided inverses in all matrix rings over D[G] are two-sided. Our methods use Sylvester rank functions and the translation ring of an amenable group. © 2002 Elsevier Science (USA).
Idioma original | Anglès |
---|---|
Pàgines (de-a) | 224-238 |
Revista | Advances in Mathematics |
Volum | 170 |
DOIs | |
Estat de la publicació | Publicada - 25 de set. 2002 |