Stability of singular limit cycles for Abel equations

José Luis Bravo, Manuel Fernández, Armengol Gasull

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

12 Cites (Scopus)

Resum

© 2015 Discrete and Continuous Dynamical Systems. We obtain a criterion for determining the stability of singular limit cycles of Abel equations x′ = A(t)x3 + B(t)x2. This stability controls the possible saddle-node bifurcations of limit cycles. Therefore, studying the Hopf-like bifurcations at x = 0, together with the bifurcations at infinity of a suitable compactification of the equations, we obtain upper bounds of their number of limit cycles. As an illustration of this approach, we prove that the family x′ = at(t - tA)x3 + b(t - tB)x2, with a, b > 0, has at most two positive limit cycles for any tB, tA.
Idioma originalAnglès
Pàgines (de-a)1873-1890
RevistaDiscrete and Continuous Dynamical Systems
Volum35
Número5
DOIs
Estat de la publicacióPublicada - 1 de maig 2015

Fingerprint

Navegar pels temes de recerca de 'Stability of singular limit cycles for Abel equations'. Junts formen un fingerprint únic.

Com citar-ho