Resum
We show that there exists an upper bound for the number of squares in arithmetic progression over a number field that depends only on the degree of the field. We show that this bound is 5 for quadratic fields, and also that the result generalizes to k-powers for integers k> 1. © 2011 Elsevier Inc.
Idioma original | English |
---|---|
Pàgines (de-a) | 379-389 |
Revista | Journal of Number Theory |
Volum | 132 |
Número | 3 |
DOIs | |
Estat de la publicació | Publicada - 1 de març 2012 |