SPICE Modeling of Memristive Devices-Based Neural Networks

F. L. Aguirre*, J. Sune, E. Miranda

*Autor corresponent d’aquest treball

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts


This paper reports a SPICE-based framework for circuit-level simulation of hybrid memristor/CMOS neural networks. By relying on ex-situ training, our approach systematizes the circuital representation of a neural network given a set of high-level design parameters. As a key element of simulations, we put special emphasis on the use of a recently developed compact model to represent the electrical characteristics of memristors. The model is called the Dynamic Memdiode Model (DMM) and is based on L. Chua's theory for memristive devices. The model comprises two equations: one equation for the electron transport and one equation for the displacement of metal ions or oxygen vacancies caused by the application of the external electric field. We show how the proposed simulation framework allows to assess the influence of the circuit parasitics as well as the device non-idealities on the performance metrics of neural networks.

Idioma originalEnglish
Nombre de pàgines6
Revista2023 IEEE 33rd International Conference on Microelectronics, MIEL 2023
Estat de la publicacióPublicada - 2023


Navegar pels temes de recerca de 'SPICE Modeling of Memristive Devices-Based Neural Networks'. Junts formen un fingerprint únic.

Com citar-ho