TY - JOUR
T1 - Spermiogenesis of inversion heterozygotes in backcross hybrids between Drosophila buzzatii and D. serido
AU - Naveira, H.
AU - Hauschteck-Jungen, E.
AU - Fontdevila, A.
PY - 1984/12/1
Y1 - 1984/12/1
N2 - Interspecific F1 hybrid females of D. serido and D. buzzatii are fertile, but hybrid males are sterile. By successive backcrossing of hybrid females to D. buzzatii males it is possible to diminish the genomic contribution of D. serido to the hybrid karyotype. Finally, only selected chromosome sections of D. serido known as inversions restricted to this species were individually left in the otherwise D. buzzatii karyotype, namely: 2 C2b-F4a (j9m9n9), 2 B2c-F4a (j9k9), 3 C5a-G1b (k2), 4 E2a-G2f (m) and 5 C5d-F2h (w). The present paper deals with the influence of these chromosome sections on sperm differentiation. Any of them produces hybrid male sterility in heterozygous condition. We analyzed spermiogenesis using the DNA specific fluorescence dye BAO in hybrid males which were heterozygous either for only one inversion, as in chromosomes 3, 4 and 5, or for a series of inversions on the same chromosome, as in chromosome 2. The abnormalities recorded included abnormal formation of the cysts, lower than normal number of cysts, abnormal number of nuclei per cyst, incomplete elongation of the cyst, incomplete elongation of the nuclei, displacement of the nuclei from the head region of the cyst and lack of individualization. In no case was there any contents in the seminal vesicle. The section from chromosome 2 of D. serido had the most drastic effect; the disruption produced by the chromosome section corresponding to inversion 3 k2 was only a little more severe than that due to 5 w, and both may be distinguished only quantitatively; inversion 4 m produced the slightest deviation from normal spermiogenesis. The larger the serido section introduced in the hybrid, the more severe were the abnormalities it produced. An interpretation in terms of a balance genic theory on the functioning of the genetic system is given. © 1984 Dr W. Junk Publishers.
AB - Interspecific F1 hybrid females of D. serido and D. buzzatii are fertile, but hybrid males are sterile. By successive backcrossing of hybrid females to D. buzzatii males it is possible to diminish the genomic contribution of D. serido to the hybrid karyotype. Finally, only selected chromosome sections of D. serido known as inversions restricted to this species were individually left in the otherwise D. buzzatii karyotype, namely: 2 C2b-F4a (j9m9n9), 2 B2c-F4a (j9k9), 3 C5a-G1b (k2), 4 E2a-G2f (m) and 5 C5d-F2h (w). The present paper deals with the influence of these chromosome sections on sperm differentiation. Any of them produces hybrid male sterility in heterozygous condition. We analyzed spermiogenesis using the DNA specific fluorescence dye BAO in hybrid males which were heterozygous either for only one inversion, as in chromosomes 3, 4 and 5, or for a series of inversions on the same chromosome, as in chromosome 2. The abnormalities recorded included abnormal formation of the cysts, lower than normal number of cysts, abnormal number of nuclei per cyst, incomplete elongation of the cyst, incomplete elongation of the nuclei, displacement of the nuclei from the head region of the cyst and lack of individualization. In no case was there any contents in the seminal vesicle. The section from chromosome 2 of D. serido had the most drastic effect; the disruption produced by the chromosome section corresponding to inversion 3 k2 was only a little more severe than that due to 5 w, and both may be distinguished only quantitatively; inversion 4 m produced the slightest deviation from normal spermiogenesis. The larger the serido section introduced in the hybrid, the more severe were the abnormalities it produced. An interpretation in terms of a balance genic theory on the functioning of the genetic system is given. © 1984 Dr W. Junk Publishers.
U2 - 10.1007/BF00122907
DO - 10.1007/BF00122907
M3 - Article
SN - 0016-6707
VL - 65
SP - 205
EP - 214
JO - Genetica
JF - Genetica
IS - 3
ER -