Speed-Ups to Isothermality: Enhanced Quantum Thermal Machines through Control of the System-Bath Coupling

Nicola Pancotti, Matteo Scandi, Mark T. Mitchison, Martí Perarnau-Llobet

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

49 Cites (Scopus)

Resum

Isothermal transformations are minimally dissipative but slow processes, as the system needs to remain close to thermal equilibrium along the protocol. Here, we show that smoothly modifying the system-bath interaction can significantly speed up such transformations. In particular, we construct protocols where the overall dissipation 𝑊diss decays with the total time 𝜏tot of the protocol as 𝑊diss∝𝜏−2⁢𝛼−1
tot, where each value 𝛼 >0 can be obtained by a suitable modification of the interaction, whereas 𝛼 =0 corresponds to a standard isothermal process where the system-bath interaction remains constant. Considering heat engines based on such speed-ups, we show that the corresponding efficiency at maximum power interpolates between the Curzon-Ahlborn efficiency for 𝛼 =0 and the Carnot efficiency for 𝛼 →∞. Analogous enhancements are obtained for the coefficient of performance of refrigerators. We confirm our analytical results with two numerical examples where 𝛼 =1/2, namely the time-dependent Caldeira-Leggett and resonant-level models, with strong system-environment correlations taken fully into account. We highlight the possibility of implementing our proposed speed-ups with ultracold atomic impurities and mesoscopic electronic devices.
Idioma originalAnglès
Número d’article031015
RevistaPhysical Review X
Volum10
DOIs
Estat de la publicacióPublicada - 20 de jul. 2020

Fingerprint

Navegar pels temes de recerca de 'Speed-Ups to Isothermality: Enhanced Quantum Thermal Machines through Control of the System-Bath Coupling'. Junts formen un fingerprint únic.

Com citar-ho