SPDEs with linear multiplicative fractional noise: Continuity in law with respect to the Hurst index

Luca M. Giordano, Maria Jolis, Lluís Quer-Sardanyons*

*Autor corresponent d’aquest treball

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

1 Citació (Scopus)
1 Descàrregues (Pure)

Resum

In this article, we consider the one-dimensional stochastic wave and heat equations driven by a linear multiplicative Gaussian noise which is white in time and behaves in space like a fractional Brownian motion with Hurst index [Formula presented]. We prove that the solution of each of the above equations is continuous in terms of the index H, with respect to the convergence in law in the space of continuous functions. The proof is based on a tightness criterion on the plane and Malliavin calculus techniques in order to identify the limit law.

Idioma originalEnglish
Pàgines (de-a)7396-7430
Nombre de pàgines35
RevistaStochastic Processes and their Applications
Volum130
Número12
Estat de la publicacióPublicada - de des. 2020

Fingerprint

Navegar pels temes de recerca de 'SPDEs with linear multiplicative fractional noise: Continuity in law with respect to the Hurst index'. Junts formen un fingerprint únic.

Com citar-ho