SPDEs with affine multiplicative fractional noise in space with index 1/4 < H < 1/2

Raluca M. Balan, Maria Jolis, Lluís Quer-Sardanyons

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

29 Cites (Scopus)

Resum

© 2015 University of Washington. All right reserved. In this article, we consider the stochastic wave and heat equations on R with nonvanishing initial conditions, driven by a Gaussian noise which is white in time and behaves in space like a fractional Brownian motion of index H, with 1/4 < H < 1/2. We assume that the diffusion coefficient is given by an affine function σ(x) = ax + b, and the initial value functions are bounded and Hölder continuous of order H. We prove the existence and uniqueness of the mild solution for both equations. We show that the solution is L2(Ω)-continuous and its p-th moments are uniformly bounded, for any p ≥ 2.
Idioma originalEnglish
Número d’article54
Pàgines (de-a)1-36
RevistaElectronic Journal of Probability
Volum20
DOIs
Estat de la publicacióPublicada - 1 de gen. 2015

Fingerprint

Navegar pels temes de recerca de 'SPDEs with affine multiplicative fractional noise in space with index 1/4 < H < 1/2'. Junts formen un fingerprint únic.

Com citar-ho