TY - JOUR
T1 - Spatial pattern alterations from JPEG2000 lossy compression of remote sensing images: Massive variogram analysis in high performance computing
AU - Pesquer, Lluís
AU - Pons, Xavier
AU - Cortés, Ana
AU - Serral, Ivette
PY - 2013/9/23
Y1 - 2013/9/23
N2 - We evaluate the implications of JPEG2000 lossy compression of remote sensing images for spatial analytical purposes. The main issue is to identify which cases and conditions in geostatistical studies are suitable for using lossy compressed images. For these purposes, an extensive test using Landsat, compact airborne spectrographic imager (CASI), and moderate resolution imaging spectroradiometer (MODIS) image series has been analyzed, through applying and comparing two-dimensional and three-dimensional (spectral and time domains) compression methods with a wide range of compression ratios for several dates, different landscape regions, and spectral bands. Due to the massive test bed and consequently to the high time consuming executions, a parallel solution was specifically developed. Variogram analyses showed that all the compression ratios maintain the variogram shapes, but high compression ratios (>20:1) degrade the spatial patterns of the remote sensing images. These alterations are lower for the three-dimensional compression method, which was a considerable improvement (25%) on the two-dimensional method for large three-dimensional series (CASI, MODIS). However, the two methods behave similarly in the Landsat case. Finally, the parallel solution in a distributed environment demonstrates that high performance computing offers a suitable scientific platform for highly demanding time execution applications, such as geostatistical analyses of remote sensing images. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
AB - We evaluate the implications of JPEG2000 lossy compression of remote sensing images for spatial analytical purposes. The main issue is to identify which cases and conditions in geostatistical studies are suitable for using lossy compressed images. For these purposes, an extensive test using Landsat, compact airborne spectrographic imager (CASI), and moderate resolution imaging spectroradiometer (MODIS) image series has been analyzed, through applying and comparing two-dimensional and three-dimensional (spectral and time domains) compression methods with a wide range of compression ratios for several dates, different landscape regions, and spectral bands. Due to the massive test bed and consequently to the high time consuming executions, a parallel solution was specifically developed. Variogram analyses showed that all the compression ratios maintain the variogram shapes, but high compression ratios (>20:1) degrade the spatial patterns of the remote sensing images. These alterations are lower for the three-dimensional compression method, which was a considerable improvement (25%) on the two-dimensional method for large three-dimensional series (CASI, MODIS). However, the two methods behave similarly in the Landsat case. Finally, the parallel solution in a distributed environment demonstrates that high performance computing offers a suitable scientific platform for highly demanding time execution applications, such as geostatistical analyses of remote sensing images. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
KW - Geostatistics
KW - High performance computing
KW - Lossy compression
KW - Remote sensing images
U2 - 10.1117/1.JRS.7.073595
DO - 10.1117/1.JRS.7.073595
M3 - Article
SN - 1931-3195
VL - 7
JO - Journal of Applied Remote Sensing
JF - Journal of Applied Remote Sensing
M1 - 073595
ER -