TY - JOUR
T1 - Simultaneously speciation of mercury in water, human blood and food samples based on pyrrolic and pyridinic nitrogen doped porous graphene nanostructure
AU - Habibnia, Mohsen
PY - 2023/3/1
Y1 - 2023/3/1
N2 - A rapid and efficient method based on a novel nitrogen-doped porous graphene nanostructure (NDPG) was used for the speciation of mercury in water and human blood samples by the CV-AAS. The mixture of the NDPG, ionic liquid, and acetone was rapidly injected into the human blood, water, and food samples for mercury separation by the cloud point assisted dispersive ionic liquid-micro solid-phase extraction (CPA-DIL-μ-SPE) at pH 7.5. The UV-microwave accessory converted the organic mercury (R-Hg) to inorganic mercury, and total mercury (TM) was determined. Finally, the organic mercury was calculated by subtracting the inorganic and entire mercury contents. By optimizing, the linear range, LOD, and enrichment factor were obtained (0.01–6.80 µg/L; 0.005–3.60 µg/L), (2.6 ng/L; 1.2 ng/L) and (9.8; 20.2) for the mercury species in human blood and water/food samples, respectively (Mean of RSD < 1.9 %). The CRM samples obtained the validation of the procedure.
AB - A rapid and efficient method based on a novel nitrogen-doped porous graphene nanostructure (NDPG) was used for the speciation of mercury in water and human blood samples by the CV-AAS. The mixture of the NDPG, ionic liquid, and acetone was rapidly injected into the human blood, water, and food samples for mercury separation by the cloud point assisted dispersive ionic liquid-micro solid-phase extraction (CPA-DIL-μ-SPE) at pH 7.5. The UV-microwave accessory converted the organic mercury (R-Hg) to inorganic mercury, and total mercury (TM) was determined. Finally, the organic mercury was calculated by subtracting the inorganic and entire mercury contents. By optimizing, the linear range, LOD, and enrichment factor were obtained (0.01–6.80 µg/L; 0.005–3.60 µg/L), (2.6 ng/L; 1.2 ng/L) and (9.8; 20.2) for the mercury species in human blood and water/food samples, respectively (Mean of RSD < 1.9 %). The CRM samples obtained the validation of the procedure.
UR - http://dx.doi.org/10.1016/j.foodchem.2022.134394
U2 - 10.1016/j.foodchem.2022.134394
DO - 10.1016/j.foodchem.2022.134394
M3 - Article
C2 - 36179633
SN - 0308-8146
VL - 403
JO - Food Chemistry
JF - Food Chemistry
M1 - 134394
ER -