Simulations of micro-sphere/shell 2D silica photonic crystals for radiative cooling

G. L. Whitworth, J. Jaramillo-Fernandez, J. A. Pariente, P. D. Garcia, A. Blanco, C. Lopez, C. M. Sotomayor-Torres

    Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

    12 Cites (Scopus)

    Resum

    Passive daytime radiative cooling has recently become an attractive approach to address the global energy demand associated with modern refrigeration technologies. One technique to increase the radiative cooling performance is to engineer the surface of a polar dielectric material to enhance its emittance atwavelengths in the atmospheric infrared transparency window (8-13 ìm) by outcoupling surface-phonon polaritons (SPhPs) into free-space. Here we present a theoretical investigation of new surface morphologies based upon self-assembled silica photonic crystals (PCs) using an in-house built rigorous coupled-wave analysis (RCWA) code. Simulations predict that silica micro-sphere PCs can reach up to 73 K below ambient temperature, when solar absorption and conductive/convective losses can be neglected. Micro-shell structures are studied to explore the direct outcoupling of the SPhP, resulting in near-unity emittance between 8 and 10 ìm. Additionally, the effect of material composition is explored by simulating soda-lime glass micro-shells, which, in turn, exhibit a temperature reduction of 61 K below ambient temperature. The RCWA code was compared to FTIR measurements of silica micro-spheres, self-assembled on microscope slides.

    Idioma originalEnglish
    Pàgines (de-a)16857-16866
    Nombre de pàgines10
    RevistaOptics express
    Volum29
    Número11
    DOIs
    Estat de la publicacióPublicada - 24 de maig 2021

    Fingerprint

    Navegar pels temes de recerca de 'Simulations of micro-sphere/shell 2D silica photonic crystals for radiative cooling'. Junts formen un fingerprint únic.

    Com citar-ho