TY - JOUR
T1 - Shear localisation in anisotropic, non-linear viscous materials that develop a CPO: A numerical study
AU - de Riese, Tamara
AU - Evans, Lynn
AU - Gomez-Rivas, Enrique
AU - Griera, Albert
AU - Lebensohn, Ricardo A.
AU - Llorens, Maria Gema
AU - Ran, Hao
AU - Sachau, Till
AU - Weikusat, Ilka
AU - Bons, Paul D.
PY - 2019/7/1
Y1 - 2019/7/1
N2 - © 2019 Localisation of ductile deformation in rocks is commonly found at all scales from crustal shear zones down to grain scale shear bands. Of the various mechanisms for localisation, mechanical anisotropy has received relatively little attention, especially in numerical modelling. Mechanical anisotropy can be due to dislocation creep of minerals (e.g. ice or mica) and/or layering in rocks (e.g. bedding, cleavage). We simulated simple-shear deformation of a locally anisotropic, single-phase power-law rheology material up to shear strain of five. Localisation of shear rate in narrow shear bands occurs, depending on the magnitude of anisotropy and the stress exponent. At high anisotropy values, strain-rate frequency distributions become approximately log-normal with heavy, exponential tails. Localisation due to anisotropy is scale-independent and thus provides a single mechanism for a self-organised hierarchy of shear bands and zones from mm-to km-scales. The numerical simulations are compared with the natural example of the Northern Shear Belt at Cap de Creus, NE Spain.
AB - © 2019 Localisation of ductile deformation in rocks is commonly found at all scales from crustal shear zones down to grain scale shear bands. Of the various mechanisms for localisation, mechanical anisotropy has received relatively little attention, especially in numerical modelling. Mechanical anisotropy can be due to dislocation creep of minerals (e.g. ice or mica) and/or layering in rocks (e.g. bedding, cleavage). We simulated simple-shear deformation of a locally anisotropic, single-phase power-law rheology material up to shear strain of five. Localisation of shear rate in narrow shear bands occurs, depending on the magnitude of anisotropy and the stress exponent. At high anisotropy values, strain-rate frequency distributions become approximately log-normal with heavy, exponential tails. Localisation due to anisotropy is scale-independent and thus provides a single mechanism for a self-organised hierarchy of shear bands and zones from mm-to km-scales. The numerical simulations are compared with the natural example of the Northern Shear Belt at Cap de Creus, NE Spain.
KW - Anisotropy
KW - Self-organisation
KW - Shear zones
KW - Strain localisation
KW - Strain-rate distribution
UR - http://www.mendeley.com/research/shear-localisation-anisotropic-nonlinear-viscous-materials-develop-cpo-numerical-study
U2 - 10.1016/j.jsg.2019.03.006
DO - 10.1016/j.jsg.2019.03.006
M3 - Article
SN - 0191-8141
VL - 124
SP - 81
EP - 90
JO - Journal of Structural Geology
JF - Journal of Structural Geology
ER -