Semigroups of matrices of intermediate growth

Ferran Cedó, Jan Okniński

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

5 Cites (Scopus)

Resum

Finitely generated linear semigroups over a field K that have intermediate growth are considered. New classes of such semigroups are found and a conjecture on the equivalence of the subexponential growth of a finitely generated linear semigroup S and the nonexistence of free noncommutative subsemigroups in S, or equivalently the existence of a nontrivial identity satisfied in S, is stated. This 'growth alternative' conjecture is proved for linear semigroups of degree 2, 3 or 4. Certain results supporting the general conjecture are obtained. As the main tool, a new combinatorial property of groups is introduced and studied. © 2006 Elsevier Inc. All rights reserved.
Idioma originalAnglès
Pàgines (de-a)669-691
RevistaAdvances in Mathematics
Volum212
Número2
DOIs
Estat de la publicacióPublicada - 10 de jul. 2007

Fingerprint

Navegar pels temes de recerca de 'Semigroups of matrices of intermediate growth'. Junts formen un fingerprint únic.

Com citar-ho