Semigroup Analysis of Structured Parasite Populations

J. Z. Farkas, D. M. Green, P. Hinow

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

20 Cites (Scopus)

Resum

Motivated by structured parasite populations in aquaculture we consider a class of size-structured population models, where individuals may be recruited into the population with distributed states at birth. The mathematical model which describes the evolution of such a population is a first-order nonlinear partial integro-differential equation of hyperbolic type. First, we use positive perturbation arguments and utilise results from the spectral theory of semigroups to establish conditions for the existence of a positive equilibrium solution of our model. Then, we formulate conditions that guarantee that the linearised system is governed by a positive quasicontraction semigroup on the biologically relevant state space. We also show that the governing linear semigroup is eventually compact, hence growth properties of the semigroup are determined by the spectrum of its generator. In the case of a separable fertility function, we deduce a characteristic equation, and investigate the stability of equilibrium solutions in the general case using positive perturbation arguments.
Idioma originalAnglès
Pàgines (de-a)94-114
Nombre de pàgines21
RevistaMathematical Modelling of Natural Phenomena
Volum5
Número3
DOIs
Estat de la publicacióPublicada - 2010

Fingerprint

Navegar pels temes de recerca de 'Semigroup Analysis of Structured Parasite Populations'. Junts formen un fingerprint únic.

Com citar-ho