Self-similar solutions and large time asymptotics for the dissipative quasi-geostrophic equation

Lucas C.F. Ferreira, José A. Carrillo

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

27 Cites (Scopus)

Resum

We analyze the well-posedness of the initial value problem for the dissipative quasi-geostrophic equations in the subcritical case. Mild solutions are obtained in several spaces with the right homogeneity to allow the existence of self-similar solutions. While the only small self-similar solution in the strong ℒp space is the null solution, infinitely many self-similar solutions do exist in weak- ℒp spaces and in a recently introduced [7] space of tempered distributions. The asymptotic stability of solutions is obtained in both spaces, and as a consequence, a criterion of self-similarity persistence at large times is obtained. © Springer-Verlag 2007.
Idioma originalAnglès
Pàgines (de-a)111-142
RevistaMonatshefte fur Mathematik
Volum151
DOIs
Estat de la publicacióPublicada - 1 de juny 2007

Fingerprint

Navegar pels temes de recerca de 'Self-similar solutions and large time asymptotics for the dissipative quasi-geostrophic equation'. Junts formen un fingerprint únic.

Com citar-ho