Sard theorems for Lipschitz functions and applications in optimization

Luc Barbet, Marc Dambrine, Aris Daniilidis, Ludovic Rifford

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

6 Cites (Scopus)

Resum

© 2016, Hebrew University of Jerusalem. We establish a “preparatory Sard theorem” for smooth functions with a partially affine structure. By means of this result, we improve a previous result of Rifford [17, 19] concerning the generalized (Clarke) critical values of Lipschitz functions defined as minima of smooth functions. We also establish a nonsmooth Sard theorem for the class of Lipschitz functions from Rd to Rp that can be expressed as finite selections of Ck functions (more generally, continuous selections over a compact countable set). This recovers readily the classical Sard theorem and extends a previous result of Barbet–Daniilidis–Dambrine [1] to the case p > 1. Applications in semi-infinite and Pareto optimization are given.
Idioma originalAnglès
Pàgines (de-a)757-790
RevistaIsrael Journal of Mathematics
Volum212
Número2
DOIs
Estat de la publicacióPublicada - 1 de maig 2016

Fingerprint

Navegar pels temes de recerca de 'Sard theorems for Lipschitz functions and applications in optimization'. Junts formen un fingerprint únic.

Com citar-ho