Sandwich theorems and capacity bounds for non-commutative graphs

G. Boreland, I. G. Todorov*, A. Winter

*Autor corresponent d’aquest treball

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

7 Cites (Scopus)

Resum

We define non-commutative versions of the vertex packing polytope, the theta convex body and the fractional vertex packing polytope of a graph, and establish a quantum version of the Sandwich Theorem of Grötschel, Lovász and Schrijver (1986) [7]. We define new non-commutative versions of the Lovász number of a graph which lead to an upper bound of the zero-error capacity of the corresponding quantum channel that can be genuinely better than the one established by Duan, Severini and Winter (2013) [5]. We define non-commutative counterparts of widely used classical graph parameters and establish their interrelation.

Idioma originalAnglès
Número d’article105302
RevistaJournal of Combinatorial Theory. Series A
Volum177
DOIs
Estat de la publicacióPublicada - de gen. 2021

Fingerprint

Navegar pels temes de recerca de 'Sandwich theorems and capacity bounds for non-commutative graphs'. Junts formen un fingerprint únic.

Com citar-ho