Resum
A band is a semigroup whose elements are idempotents. It is proved that for any field K the commutative K-algebra, constructed in [2], associated to a band S with two components E, F such that EFE = F, is a reduced ring. Thus the semigroup algebra K[S] can be embedded in upper triangular matrices over a commutative reduced K-algebra. © 2010 Copyright Taylor and Francis Group, LLC.
Idioma original | Anglès |
---|---|
Pàgines (de-a) | 4117-4129 |
Revista | Communications in Algebra |
Volum | 38 |
Número | 11 |
DOIs | |
Estat de la publicació | Publicada - 1 de nov. 2010 |