Resonant tunneling diodes in semiconductor microcavities: Modeling polaritonic features in the terahertz displacement current

Carlos F. Destefani*, Matteo Villani, Xavier Cartoixà, Michael Feiginov, Xavier Oriols

*Autor corresponent d’aquest treball

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

4 Cites (Scopus)
37 Descàrregues (Pure)

Resum

We develop in this work a qualitative quantum electron transport model, in the strong light-matter coupling regime under dipole approximation, able to capture polaritonic signatures in the time-dependent electrical current. The effect of the quantized electromagnetic field in the displacement current of a resonant tunneling diode inside an optical cavity is analyzed. The original peaks of the bare electron transmission coefficient split into two new peaks due to the resonant electron-photon interaction, leading to coherent Rabi oscillations among the polaritonic states that are developed in the system in the strong coupling regime. This mimics known effects predicted by a Jaynes-Cummings model in closed systems and shows how a full quantum treatment of electrons and electromagnetic fields may open interesting paths for engineering new THz electron devices. The computational burden involved in the multi-time measurements of THz currents is tackled by invoking a Bohmian description of the light-matter interaction. We also show that the traditional static transmission coefficient used to characterize DC quantum electron devices has to be substituted by a new displacement current coefficient in high-frequency AC scenarios.

Idioma originalEnglish
Número d’article205306
Nombre de pàgines25
RevistaPhysical Review B
Volum106
Número20
DOIs
Estat de la publicacióPublicada - 15 de nov. 2022

Fingerprint

Navegar pels temes de recerca de 'Resonant tunneling diodes in semiconductor microcavities: Modeling polaritonic features in the terahertz displacement current'. Junts formen un fingerprint únic.

Com citar-ho