TY - JOUR
T1 - Relationship between oxidative stress, pathology, and behavioral signs of lead poisoning in mallards
AU - Mateo, Rafael
AU - Beyer, W. Nelson
AU - Spann, James W.
AU - Hoffman, David J.
AU - Ramis, Antonio
PY - 2003/7/25
Y1 - 2003/7/25
N2 - Some of the adverse effects of lead (Pb) may be associated with oxidative damage of lipids, proteins, or DNA. In a previous study a linkage was observed between the susceptibilities of waterfowl species to Pb poisoning with oxidative stress. To investigate this relationship among the individuals of a single species, for 3 wk 4 groups of 72 mallards were fed diets containing high or low levels of vitamin E (20 or 220 Ul/kg) and high or low levels of Pb (0 or 2 g/kg). During the first week of Pb exposure, mallards developed hemolytic anemia, and during the second week, signs of neurological impairment. Histological findings in the Pb-exposed mallards were hemosiderosis, demyelinization of sciatic and brachial nerves, and tumefaction of renal tubular epithelium with the presence of intranuclear inclusion bodies. Lipid peroxidation increased with Pb exposure in blood, liver, bile, and brain, but decreased in nerves. Glutathione (GSH) increased with Pb exposure in liver and bile, and its oxidized/reduced ratio only increased in bile. Pb exposure inhibited GSH peroxidase activity (GPX) in plasma, liver, and brain, and decreased protein thiols (PSH) in blood and liver. Vitamin E resulted in significantly lower lipid peroxidation in nerves of control birds relative to unsupplemented controls, but did not alleviate any sign of lead posioning. Pb-induced pathological changes associated with hepatic and nervous functions were significantly correlated with lower GPX activity and PSH concentrations in these tissues rather than lipid peroxidation. Data suggest that inhibition of antioxidant enzymes and interaction with sulfhydryl groups of proteins may play a more important role in Pb poisoning of waterfowl than lipid peroxidation.
AB - Some of the adverse effects of lead (Pb) may be associated with oxidative damage of lipids, proteins, or DNA. In a previous study a linkage was observed between the susceptibilities of waterfowl species to Pb poisoning with oxidative stress. To investigate this relationship among the individuals of a single species, for 3 wk 4 groups of 72 mallards were fed diets containing high or low levels of vitamin E (20 or 220 Ul/kg) and high or low levels of Pb (0 or 2 g/kg). During the first week of Pb exposure, mallards developed hemolytic anemia, and during the second week, signs of neurological impairment. Histological findings in the Pb-exposed mallards were hemosiderosis, demyelinization of sciatic and brachial nerves, and tumefaction of renal tubular epithelium with the presence of intranuclear inclusion bodies. Lipid peroxidation increased with Pb exposure in blood, liver, bile, and brain, but decreased in nerves. Glutathione (GSH) increased with Pb exposure in liver and bile, and its oxidized/reduced ratio only increased in bile. Pb exposure inhibited GSH peroxidase activity (GPX) in plasma, liver, and brain, and decreased protein thiols (PSH) in blood and liver. Vitamin E resulted in significantly lower lipid peroxidation in nerves of control birds relative to unsupplemented controls, but did not alleviate any sign of lead posioning. Pb-induced pathological changes associated with hepatic and nervous functions were significantly correlated with lower GPX activity and PSH concentrations in these tissues rather than lipid peroxidation. Data suggest that inhibition of antioxidant enzymes and interaction with sulfhydryl groups of proteins may play a more important role in Pb poisoning of waterfowl than lipid peroxidation.
U2 - 10.1080/15287390306390
DO - 10.1080/15287390306390
M3 - Article
SN - 1528-7394
VL - 66
SP - 1371
EP - 1389
JO - Journal of Toxicology and Environmental Health - Part A
JF - Journal of Toxicology and Environmental Health - Part A
IS - 14
ER -