Reinforcement learning for optimal error correction of toric codes

Laia Domingo Colomer, Michalis Skotiniotis, Ramon Muñoz-Tapia*

*Autor corresponent d’aquest treball

Producció científica: Contribució a revistaArticleRecerca

17 Cites (Scopus)

Resum

We apply deep reinforcement learning techniques to design high threshold decoders for the toric code under uncorrelated noise. By rewarding the agent only if the decoding procedure preserves the logical states of the toric code, and using deep convolutional networks for the training phase of the agent, we observe near-optimal performance for uncorrelated noise around the theoretically optimal threshold of 11%. We observe that, by and large, the agent implements a policy similar to that of minimum weight perfect matchings even though no bias towards any policy is given a priori.

Idioma originalAnglès
RevistaPhysics Letters, Section A: General, Atomic and Solid State Physics
Volum384
Número17
DOIs
Estat de la publicacióPublicada - 15 de juny 2020

Fingerprint

Navegar pels temes de recerca de 'Reinforcement learning for optimal error correction of toric codes'. Junts formen un fingerprint únic.

Com citar-ho